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Macro scale
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Macro scale
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Network analysis

m Micro scale: analyzing the position of individual nodes, based on
their structural position in the network (e.g., node centrality, etc.)

m Macro scale: analyzing the structure of the network as a whole (e.g.,
network diameter, small-world effect, etc.)
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m Micro scale: analyzing the position of individual nodes, based on
their structural position in the network (e.g., node centrality, etc.)

m Macro scale: analyzing the structure of the network as a whole (e.g.,
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m Meso scale: analyzing groups of nodes occurring in a particular
configuration
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Network analysis

m Micro scale: analyzing the position of individual nodes, based on
their structural position in the network (e.g., node centrality, etc.)

m Macro scale: analyzing the structure of the network as a whole (e.g.,
network diameter, small-world effect, etc.)

m Meso scale: analyzing groups of nodes occurring in a particular
configuration (e.g., communities or networks motifs)
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Meso scale: communities
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Meso scale: communities
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Meso scale: motifs
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Meso scale
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m motif: subgraph?
m motif: frequent subgraph?

Frank Takes — Building Blocks of Social Networks — NETWORKS @ Kaap Doorn — Jan 20, 2020



Motif
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Motif

motif: subgraph?
motif: frequent subgraph?
motif: surprisingly frequent subgraph?

motif: noteworthy subgraph?

b
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Motif

motif: subgraph?

motif: frequent subgraph?

motif: surprisingly frequent subgraph?
motif: noteworthy subgraph?

graphlet, graph census, ...

b
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Motif discovery

Step 1: Counting the subgraphs
® Input: network
m Apply subgraph detection/counting algorithm
m Output: frequency of each subgraph
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Motif discovery

Step 1: Counting the subgraphs
® Input: network
m Apply subgraph detection/counting algorithm
m Output: frequency of each subgraph
Step 2: Determine motifs using one of these approaches:
Consider top-k most frequent subgraphs to be motifs

Filter a set of preselected useful subgraphs based on domain
knowledge and label these as motifs

Compare subgraph frequencies between “similar” networks and define
extreme discrepancies or similarities as motifs

A Repeat process for a “null model” and identify motifs as the most
“surprising” subgraphs
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Motif discovery
Step 1: Counting the subgraphs

® Input: network
m Apply subgraph detection/counting algorithm
m Output: frequency of each subgraph
Step 2: Determine motifs using one of these approaches:
Consider top-k most frequent subgraphs to be motifs

Filter a set of preselected useful subgraphs based on domain
knowledge and label these as motifs

Compare subgraph frequencies between “similar” networks and define
extreme discrepancies or similarities as motifs

A Repeat process for a “null model” and identify motifs as the most
“surprising” subgraphs

Step 3: Reuse or interpret the results

Frank Takes — Building Blocks of Social Networks — NETWORKS @ Kaap Doorn — Jan 20, 2020



Motifs in biological networks
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Counting motifs in multilayer temporal social networks

H.D. Boekhout, W.A. Kosters and F.W. Takes, Efficiently Counting Complex Multilayer Temporal Motifs in Large-Scale
Networks, Computational Social Networks 6: 8, Springer, 2019.

H.D. Boekhout, W.A. Kosters and F.W. Takes, Counting Multilayer Temporal Motifs in Complex Networks, in Proceedings of
the 7th International Conference on Complex Networks, Studies in Computational Intelligence 815: 565-577, Springer, 2018.
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Goal

Count motifs in multilayer temporal networks
Communication from online expert knowledge exchange platform
Nodes are users

Three types of edges

answering a question,
a clarification request (commenting on a question)
discussion (commenting on an answer)

Timestamps on edges

We define each multilayer temporal graph H as a sequence

(Ul, Vi, tl, Il)a (U2, V2, t2a I2)7 cee (UITH Vm, tm7 Im)
Here, u; and v; are nodes, t; is the timestamp of the link between
these nodes and /; is the type of link (so, the layer)
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Expert exchange website

| mathoverflow

Home componentwise injective quasi coherent sheaves

Questions

Tags Let X be an arbitrary scheme. A quasi coherent sheaf F is said to be injective it Homg, (—, F) is

) exact We can also regard a quasi coherent sheaf G on X such that for all open subset U of X, G(U)

is aninjective O y-module. So we can ask a question that
Unanswered 1)Is there any relation between these two kind of sheaves?
2) Which conditions on X (or on JF) are needed to regard the first kind of these sheaves (F)
equivalent to the second one?

ag algebraic-geometry

e this question

Mar 1311 at 13:42
S. Camahan ¢
36,8k =4 88 179

sha

Please fix the TeX formulas. — Martin Brandenburg Mar 13 11 at 12:3

1 Answer wotes

The condition you want is X a locally noetherian scheme. Then by Hartshorne's "Residues &
Dualities," Proposition 7.17, F is an injective ) -module if and only if for each = € X, the stalks F,

3 are injective Oz-modules. If the sections are injective Ox(U')-modules, that should give injectivity on
the stalks (abelian groups form a locally noetherian Grothendieck category, so use e.g., Henning
Krause's "The Spectrum of a Module Category” Proposition A 11, which says direct limits of injective
objects are injective). For the reverse question, | think you need X to be noetherian.

e Mar 131 at 12:01
Robert K
W 2840108

answer

edited Mar 1311 at 13:48

==n

7 years, 9 months ago

ewed 523 times

e 7years, @ months ago

0 Welcome Wagon: Commurity and
Comments on Stack Overflow

Related

BT Why is an injective quasi-coherent sheafs
restriction to an open subset still an
injective object?

14 What are the merits of the difierent
finiteness conditions on quasi-coherent
Sheaves?

BN subsheat of quotient of quasi caherent
sheaves

2 Torsion free quasi-coherent sheaves

BB Criterions for Reflexiveness of sheaves and
aspecial case

6  Are injective quasi-coherent modules
acyclic?

3 Finitely Presented Objects in The Category
of Quasi-Coherent Sheaves

1 flaness in the category of quasi coherent
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Multilayer temporal motifs

We define r-nodes, s-edges, d-temporal, A-layered motifs as
m a sequence of s edges,
M = ((u1, vi,t1, h), (u2, va, ta, ), ..., (us, vs, ts, Is)), with u;, v; € E;
m of § duration, ie, t1 < th < ...< ts and ts — t; < J;
m ranging over at most A different layers;

m and having r nodes.

Problem statement
Given set values for r, s, 0 and A and a multilayer temporal graph H,
compute the number of occurrences of each motif.
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Motif types (size 3)
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Motif types (size 4)

SRR
& 1 ¢ &is & N

a b c d e

Types of 4-node, 4-edge, temporal motifs. a Square, b Tailed-triangle, ¢ Star, d Mid-Path, e Head-Path

Figure: The 624 Square (48), Tailed-Triangle (192), Star (96), Mid-Path (96) and
Head-Path (192) motifs; 624 in total.
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Temporal motif counting

Paranjape et al. (2017) introduced 3 counting algorithms
General, based on underlying static motifs (2-node motifs);
Star, based on ‘center’ node;

Triangle, based on edges involved in the most triangles.

Time complexity in the order of the size of the input, i.e., O(m)
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Temporal motif counting

Paranjape et al. (2017) introduced 3 counting algorithms
General, based on underlying static motifs (2-node motifs);
Star, based on ‘center’ node;

Triangle, based on edges involved in the most triangles.

Time complexity in the order of the size of the input, i.e., O(m)

We extend these to deal with multilayer and partially timed motifs.
Implemented as an extension of SNAP

Frank Takes — Building Blocks of Social Networks — NETWORKS @ Kaap Doorn — Jan 20, 2020



Datasets

Table: Network dataset statistics.

Dataset Nodes Edges Edges;:atic A degmax
EMAIL-EU-CORE 985 24,929 24,929 2 345
MATH-OVERFLOW 24,759 390,441 228,215 3 2,172
FACEBOOK/WOSN 63,792 2,401,228 1,592,562 2 1,100
Ask-UBUNTU 157,222 726,661 544,774 3 5,401
SUPER-USER 192,409 1,108,739 854,377 3 14,294
STACK-OVERFLOW 2,584,164 47,903,266 34,901,115 3 44,065
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Results
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Results MathOverflow

a b c

Differences between the motif footprints of the three most distinct expert knowledge exchanges. a—c each denotes a pair (MATH-OVERFLOW Vs.
DATASETX). For a multilayer motif (cell), color is proportional to the difference, where blue denotes that the motif is more dominant in MATH-
OVERFLOW, and analogously orange in DATASETX. Color gradient is proportional to the log, difference. Values between parentheses denote the
average difference between all 27 x 36 column-normalized counts. a MATH-OVERFLOWVS. STACK-OVERFLOW (0.50), b MATH-OVERFLOW Vs.
SUPER-USER (0.43), (¢) MATH-OVERFLOW vs. ASK-UBUNTU (0.39)
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Findings

= Non-appearing motifs show the non-building-blocks :-)

m Reciprocated question-answer links (layer 1) are rare; clear difference
between experts and novice users.

m Reciprocation does occur in the discussion layer (layer 3), also in
triangles.

m The abovementioned effect is even stronger in StackOverflow (more
of a helpdesk than an expert knowledge exchange)

m The computer science communities (StackOverflow, Ask-Ubuntu,
Super-User) have most communication in the comment-on-answer
layer. In Math-overflow there is much more question-answer and
question-commenting activity (what does this say about the difference
between CS and math?)
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Enumerating motifs in multiplex corporate networks

F.W. Takes, W.A. Kosters, B. Witte and E.M. Heemskerk, Multiplex Network Motifs as Building Blocks of Corporate Networks,
Applied Network Science 3: 39, Springer, 2018.

F.W. Takes, W.A. Kosters and B. Witte, Detecting motifs in Multiplex Corporate Networks, in Proceedings of the 6th
International Conference on Complex Networks, Studies in Computational Intelligence 642: 502-515, Springer, 2017.
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Corporate networks

= Nodes are organizations/firms/companies/corporations
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Corporate networks

= Nodes are organizations/firms/companies/corporations

m Links represent, e.g., trade, loans, ownership,
interlock
m Ownership: firm A owns (part of) the shares of firm

B and can thus control it

m Board interlock: there is a relationship between
firms because they share a board member or director
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Corporate networks

Nodes are organizations/firms/companies/corporations

Links represent, e.g., trade, loans, ownership,
interlock

Ownership: firm A owns (part of) the shares of firm
B and can thus control it

m Board interlock: there is a relationship between
firms because they share a board member or director

Vladimir I. Lenin, Imperialism, The Highest Stage of Capitalism, 1916

“... a personal union, so to speak, is established between the banks and the
biggest industrial and commercial enterprises, the merging of one with another
through the acquisition of shares, through the appointment of bank directors
to the Supervisory Boards (or Boards of Directors) of industrial and commercial
enterprises, and vice versa.”
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Corporations
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CORPNET

F.W. Takes and E.M. Heemskerk, Centrality in the Global Network of Corporate Control, Social Network Analysis and Mining
6(1): 1-18, 2016.
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Multiplex corporate networks

m One set of nodes (firms)

Frank Takes — Building Blocks of Social Networks — NETWORKS @ Kaap Doorn — Jan 20, 2020



Multiplex corporate networks

m One set of nodes (firms)
m Multiple sets of edges
m Ownership (directed)

o o

m Board interlocks (undirected)

*—o
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Multiplex corporate networks

m One set of nodes (firms)
m Multiple sets of edges
m Ownership (directed)

o o

m Board interlocks (undirected)

*—o

m Interlayer assortativity: different types of edges are related to each
other.
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Multiplex corporate networks

One set of nodes (firms)
Multiple sets of edges
m Ownership (directed)

o o

m Board interlocks (undirected)

*—o

Interlayer assortativity: different types of edges are related to each
other. Frequently (5.9% of links): @—@

Challenge: enumerate multiplex motifs
Network size: 75224 nodes, 195073 edges
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Ownership network
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Board interlock network
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Multiplex network
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Data

Table: Division of firms over economic sectors

Sector Ownership Board interlock Multiplex
Bank 474 1.25% 865 1.41% 972 1.29%
Financial 4648 12.32% 6250 10.21% 8338 11.08%
Foundation /Research 55 0.14% 51 0.08% 88 0.12%
Industrial 32350 85.75% 53767 87.84% 65484 87.05%
Insurance 19 0.05% 26 0.04% 34 0.05%
Mutual/Pension Fund 112 0.30% 175 0.29% 213 0.28%
Private Equity 29 0.08% 30 0.05% 37 0.05%
Public Authority 22 0.06% 31 0.05% 41 0.05%
Venture Capital 15 0.04% 14 0.02% 17 0.02%
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Null model

m Stub matching model
m Challenge: deal with interlayer assortativity (overlap between layers)

m Modeling each layer will not realize 5.9% overlap between layers
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Null model

Stub matching model
Challenge: deal with interlayer assortativity (overlap between layers)

Modeling each layer will not realize 5.9% overlap between layers

Instead, we model each combination of layers separately
For L layers, we have 2L — 1 models

0. No link

1. Ownership link

2. Board interlock link

3. Ownership and board interlock link
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Null model

Stub matching model
Challenge: deal with interlayer assortativity (overlap between layers)

Modeling each layer will not realize 5.9% overlap between layers

Instead, we model each combination of layers separately
For L layers, we have 2L — 1 models

0. No link

1. Ownership link

2. Board interlock link

3. Ownership and board interlock link

Combine modeled layers into multiplex network

Sample a large number of models, and count its subgraphs
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Motif significance testing

Subgraph ratio:

frequency in data

frequency in random model samples
Subgraph concentration:

frequency in data

frequency of all patterns of that size

m Cut-off value for ratio (5) and concentration (0.01) determines which
subgraphs (patterns) of size k = 3, k =4 and k = 5 are motifs

m Implemented as an extension of SUBENUM
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Results

Table: Patterns and motifs per network

Pattern size Motif size
3 4 5 All 3 4 5 All
Ownership 11 63 391 465 3 4 6 13
Board interlock 2 6 21 29 0 2 10 12
Multiplex 58 1132 21858 23048 14 48 73 135

Log10(Concentration)

2
Log10(Ratio)

Figure: Ratio (horizontal axis) vs concentration (vertical axis) for all patterns.
Top right box indicates cut-off values. Patterns of size 3 in blue, size 4 in green

and size 5 in red.
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Highlighted motif

Figure: Ownership motif of size 3 with ratio 26 and concentration 0.026.
Crossholdings (common in Germany). Dominated by industry sector.
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Highlighted motifs

Figure: Multiplex motif of size 4 with ratio 2024 and concentration 0.351. Two
joint ventures. Dominated by financial sector (56%).

Figure: Multiplex motif of size 5 with ratio 113400. Two investments into two
firms governed by the same director. Dominated by “Mutual & Pension Fund”
sector (14%).
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Results
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Figure: Division of firms over sectors for full network and different motifs.
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Building blocks . ..
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Conclusion

m Meso level patterns: communities and motifs
m Trade-off between enumerating and counting motifs

m Counting can also be done in a “complex” network (timed, layered,
attributed)

m Motifs can help characterize complex communication patterns in
online communities

m Certain motifs in corporate networks appear specifically in certain
industry sectors

m Motifs in corporate networks reveal the role of the financial sector
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Thank you!

m Questions?

m https://franktakes.nl
m https://computationalnetworkscience.org

m https://corpnet.uva.nl

®Netsd |
w .
Dutch Network ‘\ Le|}<;((§nc)(/)mplex/(1 \\ /‘

Science Society = NEFY‘LorIj(\SﬁNfEXVQrk L;'\.Iéﬂ’
I = 21 NN

Figure: http://www.netsci.nl http://lcn2.leidenuniv.nl
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